Medium
You are given an array of variable pairs equations
and an array of real numbers values
, where equations[i] = [Ai, Bi]
and values[i]
represent the equation Ai / Bi = values[i]
. Each Ai
or Bi
is a string that represents a single variable.
You are also given some queries
, where queries[j] = [Cj, Dj]
represents the jth
query where you must find the answer for Cj / Dj = ?
.
Return the answers to all queries. If a single answer cannot be determined, return -1.0
.
Note: The input is always valid. You may assume that evaluating the queries will not result in division by zero and that there is no contradiction.
Example 1:
Input: equations = [[“a”,”b”],[“b”,”c”]], values = [2.0,3.0], queries = [[“a”,”c”],[“b”,”a”],[“a”,”e”],[“a”,”a”],[“x”,”x”]]
Output: [6.00000,0.50000,-1.00000,1.00000,-1.00000]
Explanation: Given: a / b = 2.0, b / c = 3.0 queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? return: [6.0, 0.5, -1.0, 1.0, -1.0 ]
Example 2:
Input: equations = [[“a”,”b”],[“b”,”c”],[“bc”,”cd”]], values = [1.5,2.5,5.0], queries = [[“a”,”c”],[“c”,”b”],[“bc”,”cd”],[“cd”,”bc”]]
Output: [3.75000,0.40000,5.00000,0.20000]
Example 3:
Input: equations = [[“a”,”b”]], values = [0.5], queries = [[“a”,”b”],[“b”,”a”],[“a”,”c”],[“x”,”y”]]
Output: [0.50000,2.00000,-1.00000,-1.00000]
Constraints:
1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai, Bi, Cj, Dj
consist of lower case English letters and digits.type Solution struct {
root map[string]string
rate map[string]float64
}
func calcEquation(equations [][]string, values []float64, queries [][]string) []float64 {
sol := &Solution{
root: make(map[string]string),
rate: make(map[string]float64),
}
n := len(equations)
for _, equation := range equations {
x := equation[0]
y := equation[1]
sol.root[x] = x
sol.root[y] = y
sol.rate[x] = 1.0
sol.rate[y] = 1.0
}
for i := 0; i < n; i++ {
x := equations[i][0]
y := equations[i][1]
sol.union(x, y, values[i])
}
result := make([]float64, len(queries))
for i, query := range queries {
x := query[0]
y := query[1]
if _, exists := sol.root[x]; !exists {
result[i] = -1.0
continue
}
if _, exists := sol.root[y]; !exists {
result[i] = -1.0
continue
}
rootX := sol.findRoot(x, x, 1.0)
rootY := sol.findRoot(y, y, 1.0)
if rootX == rootY {
result[i] = sol.rate[x] / sol.rate[y]
} else {
result[i] = -1.0
}
}
return result
}
func (sol *Solution) union(x, y string, v float64) {
rootX := sol.findRoot(x, x, 1.0)
rootY := sol.findRoot(y, y, 1.0)
sol.root[rootX] = rootY
r1 := sol.rate[x]
r2 := sol.rate[y]
sol.rate[rootX] = v * r2 / r1
}
func (sol *Solution) findRoot(originalX, x string, r float64) string {
if sol.root[x] == x {
sol.root[originalX] = x
sol.rate[originalX] = r * sol.rate[x]
return x
}
return sol.findRoot(originalX, sol.root[x], r*sol.rate[x])
}